Brain-derived adrenomedullin controls blood volume through the regulation of arginine vasopressin production and release.

نویسندگان

  • Meghan M Taylor
  • Jennifer R Baker
  • Willis K Samson
چکیده

Central nervous system-derived adrenomedullin (AM) has been shown to be a physiological regulator of thirst. Administration of AM into the lateral ventricle of the brain attenuated water intake, whereas a decrease in endogenous AM, induced by an AM-specific ribozyme, led to exaggerated water intake. We hypothesized that central AM may control fluid homeostasis, in part by regulating plasma arginine vasopressin (AVP) levels. To test this hypothesis, AM or a ribozyme specific to AM was administered intracerebroventricularly, and alterations in plasma AVP concentrations were examined under basal and stimulated (hypovolemic) conditions. Additionally, we examined changes in blood volume, kidney function, and plasma electrolyte and protein levels, as well as changes in plasma aldosterone concentrations. Intracerebroventricular administration of AM increased plasma AVP levels, whereas AM ribozyme treatment led to decreased plasma AVP levels under stimulated conditions. During hypovolemic challenges, AM ribozyme treatment led to an increased loss of plasma volume compared with control animals. Although overall plasma osmolality did not differ between treatment groups during hypovolemia, aldosterone levels were significantly higher and, consequently, plasma potassium concentrations were lower in AM ribozyme-treated rats than in controls. These data suggest that brain-derived AM is a physiological regulator of vasopressin secretion and, thereby, fluid homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A possible relationship between brain-derived adrenomedullin and oxytocin in the regulation of sodium balance.

Exaggerated thirst and salt appetite occurs when endogenous, brain-derived adrenomedullin (AM) production is compromised. In addition, the arginine vasopressin (AVP) response to hypovolemia is compromised. We hypothesized that AM acts in the hypothalamus to control oxytocin (OT) release and that the inhibitory action of AM on salt appetite is mediated via its effects on OT release in the rat. W...

متن کامل

Copeptin,as a new Boimarker

everything that disturbs the homeostatic balance of the body can be defined as stress and any stress factor activating the hypothalamic- pituitary-adrenal (HPA) axis causes an increase in arginine vasopressin (AVP) plasma concentrations. AVP is a 9 amino acid peptide in the ring structure and derived from pre-pro vasopressin. Pre-pro vasopressin is a pro hormone that synthesized by supraoptic ...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

Cortisol secretion in adult male rats

As a neurotransmitter or neuromodulator, brain histamine has a variety of physiological roles in brain functions such as hypothalamic- pituitary- adrenal (HPA) activity. Histamine induces the release of ACTH through the activation of hypothalamic neurons containing vasopressin and CRH. Histamine induces the activity of HPA axis directly or indirectly. Endogenous opioids modulate the (HPA) axis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 288 5  شماره 

صفحات  -

تاریخ انتشار 2005